前言

CAFFE(快速特征嵌入的卷积结构,Convolutional Architecture for Fast Feature Embedding)是一个深度学习框架,最初开发于加利福尼亚大学伯克利分校。 我们按照官方的说明网页来介绍如何在Ubuntu 16.04 LTS系统上手工编译安装该软件。

安装依赖包

一般依赖项

1
2
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev

特殊依赖软件

  • CUDA 安装见另外一篇博文

安装

下载caffe

由于我安装caffe的目的是跑SSD代码,所以选择的是weiliu89的fork分支进行安装。

1
2
3
 $ git clone https://github.com/weiliu89/caffe.git
 $ cd caffe
 $ git checkout ssd

编译

我们先尝试编译一下代码,然后在遇到问题的过程中逐步解决问题。

1
2
3
 # Modify Makefile.config according to your Caffe installation.
 $ cp Makefile.config.example Makefile.config
 $ make -j8

此时,可能会出现错误一:

.build_release/src/caffe/proto/caffe.pb.h:9:42: fatal error: google/protobuf/stubs/common.h: No such file or directory

错误一解决方案:

1
2
3
$ sudo apt-get install libprotobuf-dev protobuf-compiler
# 继续编译
$ make -j8

此时,可能会出现错误二:

./include/caffe/common.hpp:5:27: fatal error: gflags/gflags.h: No such file or directory

错误二解决方案:

1
2
3
$ sudo apt-get install libprotobuf-dev protobuf-compiler
# 继续编译
$ make -j8

此时,可能会出现错误三:

./include/caffe/common.hpp:6:26: fatal error: glog/logging.h: No such file or directory

错误三解决方案:

1
2
3
$ sudo apt-get install libgoogle-glog-dev
# 继续编译
$ make -j8

此时,可能会出现错误四:

./include/caffe/util/device_alternate.hpp:34:23: fatal error: cublas_v2.h: No such file or directory

错误四产生原因:

没有把cuda的头文件、库的路径放置到caffe的Makefile.config

错误四解决方案: 在Makefile.config文件中添加下列两行,具体位置可放在# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies这句话下面。

1
2
INCLUDE_DIRS += /usr/local/cuda-8.0/include
LIBRARY_DIRS += /usr/local/cuda-8.0/lib64

修改完后,继续编译make -j8

此时,可能会出现错误五:

./include/caffe/util/mkl_alternate.hpp:14:19: fatal error: cblas.h: No such file or directory

错误五解决方案:

1
2
3
$ sudo apt-get install libopenblas-dev
# 继续编译
$ make -j8

此时,可能会出现错误六:

src/caffe/layers/hdf5_data_layer.cpp:13:18: fatal error: hdf5.h: No such file or directory

错误六解决方案: 第一步,先安装下面的依赖包

1
$ sudo apt install libhdf5-serial-dev

第二步,编辑Makefile.config文件 原文件为:

1
2
3
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include 
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib 

现在修改为:

1
2
3
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/

第三步,编辑Makefile文件 原文件为:

1
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5

现修改为:

1
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial

修改完后,继续编译make -j8

此时,可能会出现错误七:

./include/caffe/util/db_leveldb.hpp:7:24: fatal error: leveldb/db.h: No such file or directory

错误七解决方案:

1
2
3
$ sudo apt-get install libleveldb-dev
# 继续编译
$ make -j8

此时,可能会出现错误八:

./include/caffe/util/db_lmdb.hpp:8:18: fatal error: lmdb.h: No such file or directory

错误八解决方案:

1
2
3
$ sudo apt-get install liblmdb-dev
# 继续编译
$ make -j8

此时,可能会出现错误九:

/usr/bin/ld: cannot find -lsnappy

错误九解决方案:

1
2
3
$ sudo apt-get install libsnappy-dev
# 继续编译
$ make -j8

这时候,基本上就可以成功编译了。

接着,继续执行下列命令:

1
2
3
$ make py
$ make test -j8
$ make runtest -j8

此时,可能会出现错误十:

.build_release/tools/caffe: error while loading shared libraries: libcudart.so.8.0: cannot open shared object file: No such file or directory

错误十解决方案: 在~/.bashrc文件中添加

1
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda-8.0/lib64

之后再执行make runtest -j8,就会顺利地跑测试程序,不出意外的话,可得到如下结果:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
$ make runtest -j8
.build_release/tools/caffe
caffe: command line brew
usage: caffe <command> <args>

commands:
  train           train or finetune a model
  test            score a model
  device_query    show GPU diagnostic information
  time            benchmark model execution time

  Flags from tools/caffe.cpp:
    -gpu (Optional; run in GPU mode on given device IDs separated by ','.Use
      '-gpu all' to run on all available GPUs. The effective training batch
      size is multiplied by the number of devices.) type: string default: ""
    -iterations (The number of iterations to run.) type: int32 default: 50
    -level (Optional; network level.) type: int32 default: 0
    -model (The model definition protocol buffer text file.) type: string
      default: ""
    -phase (Optional; network phase (TRAIN or TEST). Only used for 'time'.)
      type: string default: ""
    -sighup_effect (Optional; action to take when a SIGHUP signal is received:
      snapshot, stop or none.) type: string default: "snapshot"
    -sigint_effect (Optional; action to take when a SIGINT signal is received:
      snapshot, stop or none.) type: string default: "stop"
    -snapshot (Optional; the snapshot solver state to resume training.)
      type: string default: ""
    -solver (The solver definition protocol buffer text file.) type: string
      default: ""
    -stage (Optional; network stages (not to be confused with phase), separated
      by ','.) type: string default: ""
    -weights (Optional; the pretrained weights to initialize finetuning,
      separated by ','. Cannot be set simultaneously with snapshot.)
      type: string default: ""
.build_release/test/test_all.testbin 0 --gtest_shuffle 
Cuda number of devices: 1
Setting to use device 0
Current device id: 0
Current device name: GeForce GTX 1060 3GB
Note: Randomizing tests' orders with a seed of 17807 .
[==========] Running 2301 tests from 299 test cases.
[----------] Global test environment set-up.
[----------] 8 tests from LRNLayerTest/3, where TypeParam = caffe::GPUDevice<double>
[ RUN      ] LRNLayerTest/3.TestSetupWithinChannel
[       OK ] LRNLayerTest/3.TestSetupWithinChannel (1471 ms)
[ RUN      ] LRNLayerTest/3.TestSetupAcrossChannels
...
[----------] Global test environment tear-down
[==========] 2301 tests from 299 test cases ran. (372301 ms total)
[  PASSED  ] 2301 tests.

最后的PASSED表示全部测试都通过了,说明安装成功。

参考资料

修订历史

  • 2019-06-15, 初稿